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Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of
current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance sta-
tus of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technol-
ogies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the im-
plementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic
determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site
origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic
classes fluoroquinolones, aminoglycosides, and �-lactams were identified. Besides potential novel biomarkers with a direct cor-
relation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by pre-
dictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identifi-
cation of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient,
targeted treatment strategies to also mitigate the future potential for resistance evolution.

The frequency and spectrum of infections with antibiotic-resis-
tant bacteria are steadily increasing worldwide (1). The infec-

tions pose a serious threat to human health, as substantial mortal-
ity rates are reported in patients given ineffective empirical
therapy, mainly due to resistance to the agents used (2). One ex-
ceedingly problematic Gram-negative pathogen is Pseudomonas
aeruginosa. This opportunistic pathogen plays a dominant role as
an infectious agent affecting the lungs of cystic fibrosis patients
(3–5) and has emerged as one of the most important human
pathogens involved in nosocomial infections (6). P. aeruginosa is
known not only for its high intrinsic resistance to a broad spec-
trum of antimicrobial compounds (7, 8), but also for its remark-
able ability to acquire new resistances via horizontal gene transfer
and via the adoption of drug resistance-associated mutations dur-
ing the course of infection (9–13). In particular, the accelerating
development of multidrug-resistant P. aeruginosa strains repre-
sents a great diagnostic and therapeutic challenge in modern
medicine (14, 15) and, with the lack of new antibiotic options,
emphasizes the need for the optimization of current diagnostics,
therapies, and prevention of the spread of these organisms.

Increasing numbers of whole-genome-sequencing (WGS) ap-
proaches that aim at the identification of genetic determinants
that directly correlate with a particular bacterial phenotype are
being reported (16, 17). The ongoing developments in DNA-se-
quencing technologies are likely to affect medical microbiological
diagnostics and monitoring of pathogens. However, clinical adop-
tion of WGS in resistance profiling is still challenging. While mu-
tations that lead to modifications in drug targets, such as target
mutations that confer quinolone resistance (18), represent direct
and causal relationships to a resistance phenotype and thus are
expected to be easily identified in phenotype-genotype association
studies, the P. aeruginosa resistome is much more complex. It also

includes expression changes of genes encoding efflux pumps or
intrinsic �-lactamases, which can result from diverse mutations in
regulatory genes (19–21). Furthermore, screenings of mutant li-
braries have revealed a large number of genes that seem to impact
the resistance phenotype despite the lack of any direct link to a
known resistance mechanism (22–25). Thus, many more, and
probably also a combination of, specific mutations are expected to
influence the bacterial resistance phenotype. This complicates the
identification of causal relationships between genetic variations
and resistance.

With the aim of shedding more light on the complex relation-
ship between the evolution of antimicrobial resistance, genetic
variations, and global phenotypic changes (26–29), we correlated
resistance phenotypes, not only with genomic sequence varia-
tions, but also with gene expression profiles. Therefore, transcrip-
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tome-wide association studies of 135 phylogenetically broadly
distributed P. aeruginosa isolates that had been RNA sequenced
previously by our group (30, 31) were performed, and resis-
tance to the three clinically most important classes of anti-
pseudomonal antibiotics—fluoroquinolones, �-lactams, and
aminoglycosides—was systematically explored. Indeed, tran-
scriptional profiles of resistant isolates expressed distinct and re-
sistance-specific sequence variation and gene expression patterns.
We additionally applied machine learning algorithms to identify
complex discriminatory markers for ciprofloxacin susceptibility
versus resistance. Interestingly, the combined use of gene ex-
pression and sequence variation classifiers, which resulted
from machine learning, enhanced the accuracy of resistance
phenotype prediction in the clinical isolates. Thus, phenotype
prediction on the basis of transcriptome profiles is a valuable and
reliable approach and supports the identification of causal geno-
type-phenotype relationships.

MATERIALS AND METHODS
Strain collection and antibiotic resistance profile. The 135 investigated
clinical isolates were provided by different clinics or research institutions.
In total, we included 73 isolates collected at the Hanover Medical School
(MHH), 40 isolates from a strain collection provided by the University of
Freiburg (sampled in numerous countries across Europe), 14 isolates
from the Robert-Koch-Institute in Wernigerode, and 8 isolates provided
by the National Reference Laboratory for Multidrug-Resistant Gram-
Negative Bacteria in Bochum, Germany. The isolates were obtained from
diverse infection sites (see Table S1 in the supplemental material).

Most of the isolates were categorized as multidrug resistant (resistant
to three or more antimicrobial classes). The antibiotic susceptibility data
were either hospital or institution derived or determined in house using
the Vitek2 system (bioMérieux) or Etest strips (bioMérieux). The classi-
fication of MIC breakpoints was performed according to the Clinical and
Laboratory Standards Institute (CLSI) guidelines.

As a reference for differential gene expression and sequence variation
analysis, we chose the UCBPP-PA14 strain (32).

RNA sequencing. Whole-transcriptome sequencing of the clinical
isolates was previously performed by our group by the use of a custom-
made protocol with barcoded RNA libraries to enable pooled sequencing
of several samples (30, 31). The clinical isolates had been grown under
standard conditions (LB broth; 37°C) and harvested in RNAprotect (Qia-
gen) at an optical density at 600 nm (OD600) of 2 before the transcriptome
sequencing (RNA-seq) was performed (31).

The reads were mapped to the PA14 reference genome, which is avail-
able for download from the Pseudomonas Genome Database (http://v2
.pseudomonas.com) (33). Mapping was performed using stampy, a short-
read aligner that allows for gapped alignments (34), and SAMtools (35)
was utilized for sequence variation calling. The reads per gene (rpg) values
of all genes were calculated from the SAM output files. Testing for differ-
ential expression against the PA14 wild type (four biological replicates)
was performed with DESeq (36), an R software package that uses a statis-
tical model based on the negative binomial distribution.

To investigate the presence of horizontally acquired resistance genes in
the accessory genomes (here defined as all genes that do not belong to the
PA14 reference genome), all sequencing reads were mapped to a custom
resistance gene collection as an artificial genome. This method allows the
calculation of the relative sequence coverage of each resistance gene, pro-
viding reliable information on the presence or absence of certain genes. A
threshold of �80% sequence coverage was used for positive detection of a
gene. To confirm the bioinformatic prediction, PCR amplification and
Sanger sequencing were carried out for some of the detected resistance
genes or whole integron sequences using type 1 integron-specific primers
binding to the 5=-conserved (intI1) and the 3=-conserved (�qacE1) seg-
ments.

Phylogeny. The phylogenetic tree was created using a total of 148
genes that were �90% covered by sequencing reads in all clinical isolates
and also had orthologs in all five P. aeruginosa reference strains included
(PA14, PAO1, LESB58, PACS2, and PA7). The ortholog information was
obtained from a precomputed Pseudomonas genome alignment with
Mauve (http://v2.pseudomonas.com/mauve.jsp; 33). To extract the gene
sequences of the clinical isolates, consensus sequences were created using
the SAMtools package. From the consensus sequences and the reference
genomes, the 148 gene sequences were extracted using the annotation
information, resulting in one concatenated sequence per isolate. Phyloge-
netic distances between the strains were calculated using a k-mer ap-
proach, as described previously (37). The sequences were split into 17-
mers, which were then compared between the isolates. The resulting
distance matrix was used to build a neighbor-joining tree in R using the
ape package (38), and supplemental information, like the antibiotic resis-
tance phenotype or acquired resistance genes, was added and visualized
using iTOL (http://itol.embl.de; 39).

MLST analysis. For analysis of the multilocus sequence type (MLST)
profiles based on RNA-seq data, a consensus sequence for each isolate was
generated using SAMtools (35), from which the respective gene sequences
(acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE) were extracted using a
PERL script. Isolates with sufficient coverage in the respective genes were
assigned a sequence type (ST) number according to the allelic profiles
available in the MLST database (http://pubmlst.org/paeruginosa).

Storage of the comprehensive data set within a Web-based database.
Transcriptomes and phenotypes of all sequenced clinical isolates are stored
within the Bactome (bacterial genome) database (https://bactome.helmholtz
-hzi.de). The database further provides tools to extract gene expression or
sequence variation information for all isolates on a genome-wide level and to
perform phenotype-based group comparisons, e.g., antibiotic-resistant ver-
sus -susceptible isolates, to investigate an enrichment of sequence variations,
nonsense mutations, or differentially expressed genes.

Computational modeling and statistical evaluation. We used Pear-
son’s correlation (r) to test for linear coherence of gene expression and
MIC values and Kendall’s rank correlation (�) to analyze the dependence
of MIC values on a single, distinct feature (e.g., occurrence of specific
enzymes or mutations).

Linear mixed model analysis for SNP association studies. Linear
mixed models (LMMs) were calculated using the Python library LIMIX
(https://github.com/PMBio/limix). Single nucleotide polymorphisms
(SNPs) in coding regions that were covered by at least three reads and had
a score of at least 50 were used as binary genotype information, with 1
marking the presence and 0 the absence of a SNP in an isolate. In cases
where the read coverage was not sufficient, the missing values were re-
placed with 0.5. MIC values for the antibiotics (ceftazidime [CAZ], cip-
rofloxacin [CIP], and meropenem [MEM]) were used as phenotypic in-
formation and transformed using a rank-based transformation [the
function “preprocess.rankStandardizeNormal()” in LIMIX] to achieve a
normal distribution.

The different phenotypes were modeled as linear functions of the SNPs,
with the sample relatedness as the covariate [the function “qtl.test_lmm()”],
using the default likelihood ratio test to calculate the P values. The sample
relatedness was also calculated using LIMIX [the function “getCovari-
ance()”] and was normalized by dividing by the mean of the diagonal
(covariance of the isolates with themselves). P values were regarded as
significant when they were below the Bonferroni corrected significance
threshold of 0.05.

Gene expression association analysis. In order to measure how suit-
able expression values of single genes are to predict the resistance of an
isolate to specific antibiotics, the normalized reads per gene were consid-
ered scores from which an area under the concentration-time curve
(AUC) value was computed for every gene with respect to the two classes
“resistant” and “susceptible.” Based on the work of Mason and Graham
(40), P values for the AUC values were calculated, and a false-discovery
rate correction was carried out. The AUC significance threshold was cal-
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culated based on a corrected maximal P value of 0.05 for each data set and
resulted in 0.727 for CAZ, 0.730 for MEM, and 0.737 for CIP.

Machine learning with feature selection and the P-SVM algorithm.
The potential support vector machine (P-SVM) was employed for learn-
ing prediction models. P-SVM is a scale-invariant support vector machine
that features two distinct regularization approaches (41). In the dyadic
mode used for analyzing the data described in this paper, P-SVM essen-
tially comes down to training a regularized linear model that tries to pro-
vide good generalization performance by choosing a compact set of mark-
ers, the combination of which is highly predictive.

The SNP data set was prefiltered for a minimal coverage of three reads,
a Phred quality score of at least 50, and only nonsynonymous SNPs in
coding regions, with 1 marking the presence and 0 the absence of an SNP
in an isolate. For the SNP data set, the P-SVM was complemented by a
feature selection step that was done beforehand: the position-dependent
kernel association test (PODKAT) was used to detect genomic regions in
which the SNPs are most significantly correlated with the phenotype to be
predicted. PODKAT is a recent extension of the SNP set kernel association
test (SKAT) (42), which uses a position-dependent kernel in order to
better account for very rare and private SNPs (43, 44). Once the most
significant regions are determined with PODKAT, the individual contri-
butions of the SNPs to the test statistics are computed, and the 5,000 most
promising SNPs are selected for further processing with P-SVM. For
cross-validation with P-SVM, the data were divided into five nonoverlap-
ping subsets, so-called folds, on which a 5-fold nested cross-validation
approach was applied. While each time one fold was withheld in the outer
loop as an independent test set (test fold) to compute unbiased estimates
of prediction performance, parameter selection was carried out by 4-fold
inner cross-validation on the remaining four folds (training folds). Once
the best parameters had been found for the four training folds of the outer
cross-validation loop, a model was trained on these four folds using the
optimized parameters and applied to the withheld test fold to estimate the
prediction performance on independent data (45, 46). This was applied to
all five possible combinations of alternating splits (5-fold cross-valida-
tion), finally resulting in five sets of markers for any tested condition.

The gene expression data (normalized reads per kilobase of gene
length) was analyzed by the P-SVM, with 5-fold double cross-validation
(optimization criterion AUC) as described previously, though without
data preprocessing and optional feature preselection.

Nucleotide sequence accession number. All the short-read data are
available at the National Center for Biotechnology Information Sequence
Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession num-
ber SRP034661.

RESULTS
Antimicrobial resistance profiles in clinical P. aeruginosa iso-
lates with broad taxonomic distribution. We determined the an-
timicrobial resistance profiles of 135 clinical P. aeruginosa isolates
that had been sampled from different regions across Europe and
from various infection sites. For all of these isolates, transcrip-
tional profiles were recorded previously, and the phylogenetic re-
latedness was determined by using a k-mer approach (30). Figure
1 depicts a neighbor-joining tree based on the sequence similarity
of 148 commonly expressed genes and includes five reference
strains (PA14, PAO1, PA7, PACS2, and LESB58). In addition to
the antibiotic resistance profile, the acquisition of horizontally
acquired resistance genes is depicted in the phylogenetic tree. The
isolates exhibit a broad taxonomic distribution and separate into
two main lineages. One lineage contains the PA14 reference strain,
as well as one large cluster including high-risk clone ST235 isolates
(47); the other lineage contains PACS2, LESB58, and PAO1 and
a cluster including high-risk clone ST175 isolates (47). There
were also some taxonomically distant isolates (MHH6887,

MHH13682, MHH13684, MHH9830, and B34), as well as the
known outlier PA7 (48).

In general, the clinical isolates expressed diverging resistance
phenotypes. Resistance against ciprofloxacin, tobramycin, cefta-
zidime, and meropenem was largely independent of phylogenetic
relatedness (Fig. 1). However, the worldwide-disseminated lin-
eages of sequence types 235 and 175 (47) were clear hot spots of
resistance gene carriage. All ST235 isolates harbored aminoglyco-
side nucleotidyltransferases (mainly encoded by aadA1 or aadA6),
and nearly all of them had an additional aminoglycoside acetyl-
transferase (mainly encoded by aacA4). Overall, 15 different ami-
noglycoside-modifying enzymes (AMEs) from all three enzymatic
types were identified in 49 of the isolates (36%), with the majority
of isolates harboring numerous different enzymes (between two
and six). Furthermore, we identified nine different �-lactamases
(OXA-2 and -4, VIM-1 and -2, GIM-2, IMP-1 and -7, PER-1, and
CTX-M-3) in 19 isolates (14%), 6 of which contained two en-
zymes simultaneously. All but one isolate carried �-lactamases
only in combination with at least one aminoglycoside-modifying
enzyme, demonstrating their common association with integrons
that harbor arrays of resistance gene cassettes.

We next correlated the presence and expression of acquired-
resistance-conferring genes with the resistance profiles of the clin-
ical isolates. We found that the great majority of isolates (41 out of
46 isolates [89%]) that exhibited resistance to tobramycin
(MIC � 8 �g/ml) carried at least one tobramycin-modifying en-
zyme (encoded by aacA4, aadB, aacA7, or aacA5). Only 14 out of
45 (31%) of the meropenem-resistant (MIC � 16 �g/ml) and 17
out of 61 (28%) of the ceftazidime-resistant (MIC � 32 �g/ml)
isolates expressed a �-lactamase-encoding gene. Additionally, two
isolates with Vim-2 carbapenemases showed a meropenem-inter-
mediate resistance phenotype. Of note, the expression levels of
resistance genes also correlated with the MIC level. As an example,
two isolates (Psae1747 and Psae2136) were identified that har-
bored the same set of resistance genes but exhibited different levels
of resistance (tobramycin MICs of �1,024 �g/ml and 128 �g/ml,
respectively). This was in line with 2- to 3-fold-increased expres-
sion of the aacA7 and aacA5 genes in Psae1747, resulting in high-
level tobramycin resistance.

More detailed information on the contribution of horizontally
acquired-resistance-conferring genes versus other chromosomally
acquired genetic determinants of resistance is provided in Fig. S1 in
the supplemental material.

Correlation of genomic sequence variations with the expres-
sion of an antibiotic resistance phenotype. We systematically in-
vestigated the quantitative (transcriptional profiles) and qualita-
tive (sequence information) RNA-seq data on the 135 bacterial
isolates. Since an RNA sequence mirrors the sequence of the DNA
from which it was transcribed, we first used the qualitative RNA-
seq data to describe sequence variations on the single-nucleotide
level within the transcribed genes, which constitute a high per-
centage of the overall number of genes in P. aeruginosa (30). In
order to minimize false-positive associations that result from ge-
netic relatedness and population structure (49), we applied LMMs
to uncover the effect of nonsynonymous SNPs on the resistance
phenotype. The genotype data set was combined with rank-trans-
formed MIC values for the fluoroquinolone ciprofloxacin and the
�-lactams ceftazidime and meropenem. Since we aimed at iden-
tifying markers of acquired chromosomally encoded resistance,
only isolates that did not carry a horizontally acquired resistance
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FIG 1 Phylogenetic clustering and distribution of antibiotic resistance. The phylogenetic tree was constructed with a neighbor-joining algorithm based on a
distance matrix calculated from k-mers of all genes with a coverage of at least 90% in all clinical isolates (total, 148 genes). Strain PA7 was defined as the outgroup.
The data sets on antibiotic resistance and the horizontally acquired resistance genes were integrated using iTOL (39). The red tree branches indicate ST235, and
the blue branches are ST175 isolates. Publicly available reference strains are indicated in red.
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gene were included in the association analysis (this is why tobra-
mycin was not further analyzed here). Permutation tests with ran-
domly shuffled MIC values were carried out to confirm the signif-
icance of true-positive associations. SNP associations for each of
the tested antibiotics are shown in the Manhattan plots in Fig. 2
(see also Table S2 in the supplemental material). A clear associa-
tion was found between the expression of ciprofloxacin resistance
(77 isolates; MIC � 4 �g/ml) and the presence of one SNP in gyrA
encoding a DNA gyrase (T83I; P � 5.88 � 10	18) and one in parC
encoding topoisomerase IV (S87L/W; P � 4.07 � 10	7). Both
nucleotide positions are well-known targets for mutations in-
volved in ciprofloxacin resistance (50, 51). The T83I SNP in
gyrA was indeed present in 85 out of the 135 genomic se-
quences, 72 of which were ciprofloxacin-resistant isolates
(MIC � 4 �g/ml), and there was a clear overall correlation (� �
0.637) between the presence of SNPs in gyrA and elevated cip-
rofloxacin MIC values. The S87L/W SNP in parC was present in
44 isolates, and there was also a clear correlation (� � 0.727)

between the presence of this particular SNP and ciprofloxacin
MICs above 8 �g/ml.

Manual inspection of the complete quinolone resistance-de-
termining regions (QRDR) of the known target genes gyrA, gyrB,
parC, and parE revealed additional mutations that had previously
been associated with quinolone resistance. However, due to their
overall low abundance, those mutations were not detected in the
association studies. Eleven non-T83I SNPs in gyrA were found,
and most of the mutations in gyrB, parC, and parE were detected
in combination with the T83I mutation in gyrA.

No association of the presence of a particular SNP and re-
sistance to meropenem (31 isolates, excluding the ones with
acquired-resistance-conferring genes; MIC � 16 �g/ml) was
detected, and only one SNP in the chromosomally encoded �-lac-
tamase AmpC was found to be associated with ceftazidime resis-
tance (44 isolates, excluding the ones with acquired-resistance-
conferring genes; MIC � 32 �g/ml), whose impact still needs to be
investigated.

FIG 2 Transcriptome-wide mutation association with resistance phenotypes. Shown is a sequence variation association study for significant differences between
clinical isolates resistant and susceptible to CAZ, MEM, and CIP. Each dot represents one nucleotide position, and only SNPs with an uncorrected P value
of 
0.05 were plotted. Hits above the significance threshold (corrected P value of 
0.05) are indicated in red.
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Correlation of changes in gene expression with an antibiotic
resistance phenotype. We next analyzed the quantitative RNA-
seq data to uncover whether there are differentially expressed
genes that can be associated with a resistance phenotype. To
investigate resistance-associated single-gene expression pat-
terns, receiver operating characteristic (ROC) analyses were
performed. They resulted in an AUC-based probability for the
association of the expression of a particular gene with resis-
tance. Associations for each of the tested antibiotics are shown
in the Manhattan plots in Fig. 3 (see Table S2 in the supple-
mental material). We found three genes with expression pro-
files significantly associated with MEM resistance, but all of
them (PA14_46110, a predicted sodium-solute symporter; cc4,
encoding the diheme protein cytochrome c4; and gbuA, a gua-
nidinobutyrase involved in the arginine dehydrogenase path-
way) only reached AUC values just above the defined signifi-
cance threshold. Of note, just below the threshold (AUC �
0.692), the known carbapenem entry porin-encoding gene
oprD was found to be downregulated in MEM-resistant iso-
lates. However, a clear association of oprD was found when we
looked exclusively for enrichment of nonsense mutations in

the group of meropenem-nonsusceptible isolates (data not
shown). A more detailed analysis of the distribution of prema-
ture translation termination mutations in oprD is shown in Fig.
S2A in the supplemental material. These mutations occurred
generally throughout the gene sequence. In contrast, single
amino acid exchanges were mostly restricted to either the
periplasmic hinge or the surface-associated loops (see Fig. S2B
and C in the supplemental material). To evaluate how oprD
gene inactivation was correlated with protein expression, im-
munoblot analyses with an OprD-specific antibody were per-
formed, and we compared the actual protein levels of a total of
63 isolates with different MEM resistance phenotypes with the
expression and sequence information obtained from RNA se-
quencing. All the tested nonsense mutations led to abolishment
of efficient translation (data not shown). Interestingly, there
was only partial correlation between the oprD mRNA levels and
protein production. One reason could be that OprD is subject
to frequent, possibly MexT-mediated posttranscriptional reg-
ulation, as has been described previously in PAO1 (52).

Analysis of the CIP resistance phenotype revealed six genes

FIG 3 Transcriptome-wide gene expression association with resistance phenotypes. Shown is a gene expression association study for significant differences
between clinical isolates resistant and susceptible to CAZ, MEM, and CIP. Each dot represents one gene. Hits above the significance threshold (corrected P value
of 
0.05) are indicated in red.

Antibiotic Resistance Profiling Using RNA-seq

August 2016 Volume 60 Number 8 aac.asm.org 4727Antimicrobial Agents and Chemotherapy

http://aac.asm.org


whose expression was associated with resistance. Among them, we
found the sensor kinase-encoding gene cbrA, which has been re-
ported to be involved in resistance to polymyxins, tobramycin,
and ciprofloxacin (53).

The most significant association was found for the expression
of the chromosomally encoded �-lactamase AmpC (AUC � 0.84)
with a CAZ-resistant phenotype. There was a clear correlation
(r � 0.638) between increased ampC gene expression and elevated
CAZ MICs (range, 0.5 to 64 �g/ml). Furthermore, the majority of
CAZ-resistant (35/36) and intermediate-resistant (8/13) isolates
exhibited high (�3 log2 fold change [FC]) ampC expression val-
ues, while most (49/56) susceptible variants in turn showed only
slight or no constitutive overexpression. Interestingly, all seven
CAZ-susceptible isolates that exhibited strongly increased ampC
expression (�5 log2FC) harbored mutations in the ampC gene.
Most of them were deletions within the first 10 nucleotides, as
additionally confirmed by Sanger sequencing, which led to frame-
shifts and thus probably to a truncated signal peptide that is
needed for �-lactamase maturation and secretion into the
periplasmic space.

Of note, no efflux pump components appeared to be signifi-
cantly associated with resistance to any of the investigated antibi-
otics. Manual inspection confirmed a high percentage of clinical
isolates with efflux pump overexpression. This overexpression
was correlated with an increased number of sequence variations in
the respective regulatory genes (see Fig. S3 in the supplemental
material). However, for none of the antibiotics a direct correlation
to a resistance was observed. One reason could be the presence of
other resistance mechanisms that masked the effects of antibiotic
efflux. On the other hand, we also found a high number of suscep-
tible isolates with strong efflux pump overexpression (e.g., 59 to-
bramycin-susceptible isolates strongly overexpressed mexXY with
a change of �10-fold).

Identification of complex discriminatory markers for resis-
tance by machine learning. Standard phenotype-genotype asso-
ciation methods are suitable for the detection of directly asso-
ciated single markers, as we have shown in this study, but they
have limitations when it comes to identifying factors that con-
tribute to more complex phenotypes. These phenotypes may
result from different combinations of genetic variations, with
the individual contributing factors being too rare to be de-
tected in direct-association studies. Thus, complex machine
learning classification algorithms are implemented more and
more in clinical research to identify disease-causing biomark-
ers, especially in studies based on large-scale genomic ap-
proaches that result in a flood of sequence data (54, 55). Exces-
sively high numbers of markers and typically low numbers of
samples, plus the need to model interactions of multiple causal
markers, call for advanced regularized linear models. The P-
SVM (41 was used in this study to discriminate between two

phenotypically opposed groups (here, resistant and suscepti-
ble). The P-SVM has been designed for exactly such purposes
and has proven to be highly successful for analyzing high-di-
mensional molecular data (56). The training of the models,
along with the selection of optimal hyperparameters, was done
by nested cross-validation in order to facilitate model selection
while still obtaining unbiased estimates of the generalization
performance (45, 46).

In this study, the machine learning algorithms mentioned
above were applied to the ciprofloxacin data set. The homoge-
neous distribution of molecular mechanisms (mainly target mu-
tations) underlying ciprofloxacin resistance development seems
to be particularly suited to the evaluation of whether resistance
can be correlated, not only with distinct genetic variations, but
also with the expression of a distinct and global transcriptional
profile.

Genomic and transcriptomic ciprofloxacin resistance classi-
fiers. The predictive machine learning model based on the SNP
data set revealed in total 247 unique mutations that were identi-
fied in at least one validation fold to be discriminatory for the
ciprofloxacin resistance phenotype. A lower number of genes (167
in total) with changed expression were identified as transcrip-
tomic classifiers in at least one validation fold. The vast majority of
classifiers have been identified in only one of the five validation
folds. However, eight mutation classifiers and six expression clas-
sifiers have been detected in at least three folds and thus can be
considered strong discriminators (Tables 1 and 2).

The overall reliability of the resistant versus susceptible pheno-
type classification based on the identified list of markers is dem-
onstrated by the AUC score, calculated from the double-cross-
validation P-SVM. The ciprofloxacin SNP-based phenotype
classification seemed to be highly reliable, as it resulted in an AUC
score of 0.885. While this might have been expected, strikingly, the
gene expression data set also delivered a score of 0.724 (Table 1).

A closer look at the most frequently detected marker mutations
confirmed the well-known gyrA T83I mutation to be the strongest
classifier in the SNP data set, as it was detected in all five validation
folds. Interestingly, the second most significant sequence varia-
tion that has been identified as directly associated with ciprofloxa-
cin resistance (parC S87L/W) in the LMM was not among the 247
sequence variation classifiers. Instead, many other mutations
without any previously known relation to antibiotic resistance
contributed to the separation of resistant and susceptible isolates.
For instance, mutations in two ATP-binding regions of transport-
ers were found in four validation folds.

Also, the gene expression profile data set resulted in moder-
ately accurate predictability (AUC � 0.7), although besides efflux
pumps, no changes in the expression of single genes have been
reported before to be associated with ciprofloxacin resistance.
Among the strongest classifiers for this data set was the alginate

TABLE 1 Marker occurrence and classification reliability for ciprofloxacin resistance/susceptibility phenotype classification by machine learning

Data set (CIPr vs. CIPs)

No. of markers per no. of folds

AUCa5 4 3 2 1 Total

SNPs 1 2 5 21 218 247 0.885
Gene expression 0 0 6 29 132 167 0.724
a Area under the curve values calculated from an AUC-optimized ROC analysis for the PODKAT-PSVM double-cross-validation approach. The calculated AUC value (optimized
for AUC) indicates the predictive power of the classifier combination.
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biosynthesis gene algX, whose upregulation might contribute to
the previously described protective effect of alginate against anti-
biotics, including ciprofloxacin (57) (Table 2). The strong dis-
criminatory power of the machine learning classification is de-
picted in Fig. 4 in a principal-component analysis (PCA). The
separation of resistant and susceptible isolates based on sequence
variations (Fig. 4A), as well as on gene expression values (Fig. 4B),
was much more precise when based on markers defined by ma-
chine learning than when based on random classifiers.

The transcriptional profile can predict ciprofloxacin resis-
tance. As we observed great classification power with machine
learning, we next evaluated whether there is a characteristic tran-
scriptional profile that can indeed be used to predict ciprofloxacin
resistance. Interestingly, two ciprofloxacin-resistant clinical iso-
lates that had acquired SNPs in the QRDR, albeit not the very
frequent ones, were included in this study. Thus, since the domi-
nant gyrA T83I mutation served as the only classifier mutation
from the QRDR, both isolates were classified as ciprofloxacin sus-
ceptible when looking at the SNP-based classifiers identified by
machine learning. However, when plotting the isolates based on
the gene expression classifiers resulting from P-SVM, both of the
isolates mentioned clearly clustered within the group of resistant
isolates (Fig. 5). This demonstrates a distinct transcriptional pro-
file expression of the resistant isolates, probably due to a direct
effect of the resistance acquisition on the transcriptome or to mu-
tational adaptations that have been acquired in order to compen-
sate for the fitness burden of resistance-conferring mutations.

DISCUSSION

The Achilles heel of global efforts to combat infectious diseases
and accompanying antimicrobial resistance is early diagnosis
(58). Consequently, there is a strong need for the introduction of
improved diagnostic tools to enable more targeted and faster
treatment and for implementation of effective infection control
measures to diminish the development and spread of resistance
(59, 60). To achieve this, there are expanding efforts worldwide to
transform current diagnostics from the common culture-based
methods to genomics-based tools. The application of next-gener-
ation sequencing (NGS) technologies has the potential to signifi-

cantly accelerate bacterial species identification and resistance
profiling (61) and could provide information, not only on the
current drug susceptibility of a pathogen, but also on its potential
to evolve resistance (62). However, precise prediction of antibiotic
resistance profiles solely based on genotypes is still challenging
due to the complexity of some resistance mechanisms (63). Al-
though recent studies have demonstrated the potential of NGS as
a tool for antibiotic resistance prediction (64–67), they were
mainly restricted to the investigation of a limited set of well-
known resistance-associated loci. Furthermore, all the previous
studies relied exclusively on genome sequencing without consid-
ering the impact of multifactorial transcriptional regulation on
the resistance phenotype.

This study is the first transcriptome-sequencing-based ap-
proach that has aimed at a systematic analysis of resistance mark-
ers using different methodologies and including both mutation
and gene expression profiles. Our results demonstrate that, be-
sides the acquisition of horizontally transferred resistance genes,
dominant mutational variations (e.g., SNPs in target genes) or
gene expression changes (which can be caused by diverse sequence
changes), such as the upregulation of intrinsic �-lactamases, can
be investigated in parallel by RNA-seq.

Many factors affect the accuracy of a prediction model, includ-
ing the sample size, the numbers of variations underlying a par-
ticular phenotype (68), and, in the field of clinical microbiology, a
high proportion of clinical samples without shared ancestry. Thus,
the main objective of this study was to define the scale of informa-
tion necessary for successful P. aeruginosa resistance phenotype-
genotype correlations in terms of (i) the number and sufficient
phylogenetic diversity of clinical isolates included in the study and
(ii) the effectiveness of gene expression data to reduce the com-
plexity of phenotypes that cannot be correlated with one directly
associated marker.

We clearly demonstrated that RNA sequencing of 77 (cipro-
floxacin), 61 (ceftazidime), and 45 (meropenem) �-lactam-resis-
tant P. aeruginosa isolates with broad phylogenetic distribution
was already sufficient to establish significant correlations and to
identify the most dominant bacterial resistance traits in a com-
bined gene expression and sequence variation approach. Thus, it

TABLE 2 Strong classification markers for the ciprofloxacin resistance data set identified by machine learning analysesa

Data set (CIPr vs. CIPs) Gene SNP positionb Product Fold no.

SNPs PA14_23260; gyrA 2015001 DNA gyrase subunit A 5
PA14_20440; phnN 1758114 Phosphonate transport ATP-binding protein 4
PA14_60790 5418859 Putative ABC transporter, ATP-binding protein 4
PA14_25600 2238920 Peptidase 3
PA14_34600 3074288 Putative glyceraldehyde-3-phosphate dehydrogenase 3
PA14_62810; secG 5604332 Preprotein translocase subunit 3
PA14_73360; gidB 6529928 Glucose-inhibited division protein B 3
PA14_08060 693759 Tail fiber assembly protein 3

Gene expression PA14_18480; algX Alginate biosynthesis protein AlgX 3
PA14_32290 Hypothetical protein 3
PA14_48950 Hypothetical protein 3
PA14_58410; opdP Glycine-glutamate dipeptide porin 3
PA14_59390 Hypothetical protein 3
PA14_62100; yedZ Sulfide oxidase subunit 3

a The most frequently selected markers (a minimum of three outer training models [folds]) for differentiation between ciprofloxacin-susceptible and -resistant isolates are listed.
b For the SNP data set, the genomic position of the mutation in the PA14 reference strain.
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can be expected that the application of unbiased transcriptome-
wide association studies to a much larger number of resistant
isolates (which do not express the most dominant resistance
markers) has the potential to uncover novel mechanisms of resis-
tance.

Most strikingly, the application of complex machine learning
classification algorithms to our clinical isolates revealed a specific
transcriptional profile within the group of ciprofloxacin-resistant
isolates that was clearly distinct from that of the susceptible group.
Since the cause of ciprofloxacin resistance in the clinical isolates
could nearly always be attributed to target mutations (see Fig. S1
in the supplemental material), the observed subtle changes in the
transcriptional profile are most likely a compensation for the
perturbing effects of the target mutation rather than a contribu-
tion to the resistance phenotype. This is important, since it implies
that there might be a general transcriptional fingerprint of resis-
tance to be exploited for diagnostic purposes. Resistance pheno-
types caused by rare genomic variations could be detected when

screening for the phenotype-associated gene expression markers,
which could thus significantly support the genomics-based iden-
tification of resistance.

In conclusion, our unbiased screening will undoubtedly
have to be expanded in the future in order to identify more
infrequent genetic resistance markers. Nevertheless, our results
suggest that the availability of larger amounts of sequencing
information from clinical-sample collections may accomplish
the unraveling of the comprehensive resistome of P. aeruginosa
and might also help to uncover how different treatment regimens
affect the phenotypic and genotypic evolutionary paths to antibi-
otic resistance in the clinical setting. In the same vein, information
about the presence of mutations that compensate for fitness costs
or mutations that impact bacterial pathogenicity might influence
the choice of antibacterial treatment. Combining transcriptional
and mutational data sets and implementing them in predictive
models will be essential to detect and understand resistance path-
ways and patterns in large, complex data sets. Especially in light of

FIG 4 PCA plots of all ciprofloxacin-resistant and -susceptible isolates. The PCAs on the left are based on the whole set of SNPs (A) or genes (B), and the
PCAs on the right are based on only SNPs that occurred in a minimum of three validation folds (A) or on the whole set of phenotype-separating genes (B)
identified by the P-SVM machine learning approach. The red and green dots represent ciprofloxacin-resistant and -susceptible isolates, respectively.
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the steadily improving quality and quantity of sequencing data
acquisition (69), it seems reasonable that faster and, in the future,
also more economical genotype-based phenotype profiling has
the potential to be used in routine medical microbiology diagnos-
tics.
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